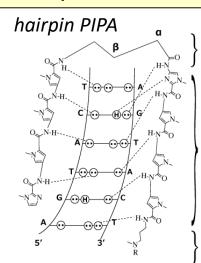
PIPA: a Novel Gene Silencer

Why don't consider the use of PIPAs over knockout by RNAi or knockdown by genome editing

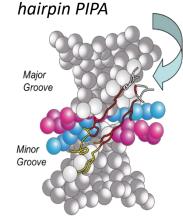
Characteristics of PIPA


- PIPA is a kind of peptide, masks with an minor groove on the outside of the double stand DNA.
- Recognizing the target double stand DNA in dormant state, the mechanism differs from that of single stranded RNAi.
- PIPA is consisting of all non-proteinogenic amino acids. Stable in cells or bodies because of nuclease resistance.
- Enter into cell nucleus without any DDS.
- Flexible Design against any gene.
- 4 As with RNAi, it is a temporary reduction in expression, its effect is also weakened and restored by passaging.

PIPAs are expected as a novel drugs for gene therapy with a novel mechanism; interfering the transcription of disease-related genes, suppressing expression of diseased proteins, stopping onset and progression of diseases.

[References]

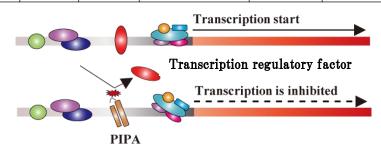
P. B. Dervan et. al., Nature 391 (1998) 468-471; P. B. Dervan and R. W. Burli, Current Opinion in Chemical Biology 3 (1999) 688-693; P. B. Dervan, Bioorganic & Medicinal Chemistry 9 (2001) 2215-2235.


Principle: double strand DNA recognition by PIPA

Central gamma aminobutyric acid linker makes the molecule folds into a hairpin type, selectively binds to a specific base sequence.

Adjust the length of the base sequence recognized by introducing beta-alanine at an appropriate position.

At the C terminus, special functional groups are placed to increase affinity for DNA.



PIPA binds reversibly to specific nucleotide sequences in the minor groove of double-helical DNA by hydrogen bonding.

HiPep Laboratory has been
performed R&D on industrial
application of molecular
recognition of living organisms.
In addition to biodetection
using PepTenChip®, a novel
microarrays, drug development
are also carried out.

Hence, double-stranded DNA binding using PIPAs, peptides consisting of pyrrole/imidazole rings, control transcription factors and inhibiting gene transcription. Academic research on PIPA has been carried out in the past two decades and now clinical applications are reported.

Method	Target	Cleavage Activity	Gene expression suppression type	Genetic code change	Change in expression level	Necessity of clone isolation
PIPA	Genomic dsDNA		Knock down gene transcriptional activity	No	~	
RNAi	mRNA	√	Knock down gene expression	No	>	
CRISPR	Genomic dsDNA	✓	Knock out	Yes	✓	✓

